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Supersonic boundary-layer flow on a flat plate near a point of injection cut-off is 
considered. The goal is to develop a non-singular solution in the limit of large 
Reynolds number in the vicinity of the boundary-condition change. An applica- 
tion of Goldstein-type singular solutions shows that an interaction-type theory is 
required even for transverse velocity jumps on the boundary O(R-I). The inter- 
action analysis is developed in terms of the linearized triple-deck theory 
described by Smith & Stewartson (19734. The analytically derived soIution 
provides a continuous pressure and wall-shear distribution. 

1. Introduction 
Boundary-layer flows involving an injection cut-off point fall within the class 

of problems characterized by discontinuous boundary conditions a t  one or more 
points of the flow. For such problems, classical boundary-layer theory is not valid 
in the neighbourhood of these discontinuities. Rather, a local interaction theory 
must be used in order to describe the flow in such a neighbourhood. The purpose 
of this note is to apply an existing local interaction theory (Smith & Stewartson 
1973a) t,o the injection cut-off problem. 

To this end, we consider a supersonic uniform flow parallel to a hot (cold) semi- 
infinite flat plate. A gas is injected a t  the wall with a mass rate distribution r i ~  
normal to the plate described by 

?il= C(2xR)-ql-H(x- i)], (1 .1 )  

where H is the Heaviside step function. The variable xis measured along the plate 
starting from the leading edge and has been non-dimensionalized with respect to 
the finite length of injection L. 

The Reynolds number of the flow is defined by R = U, Llv, 9 1, where Urn and 
v, are the values of the uniform velocity and the kinematic viscosity ofthe 
external flow respectively. The injection parameter C is to be specified and is 
chosen such that C < C,,, where C, is a critical value beyond which the boundary 
layer separates. Some critical values for various flow conditions are tabulated in 
Amr & Kassoy (1973). 

Classical boundary-layer theory remains valid upstream o f x  = 1 and no sepa- 
ration occurs a t  any point in the flow. Our emphasis will be on the structure of 
the flow in the neighbourhood of the cut-off point x = 1. To this end, we first 
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describe the flow fork = x - 1 -+ 0 + . Owing to  the sudden change in the boundary 
conditions a t  the wall, the flow variables and/or their derivatives a t  the cut-off 
point will not be continuous functions. (The effects of such discontinuities were 
observed by W'olfram & Walker (1970) in a study of the influence of upstream 
injection on heat transfer in a supersonic boundary layer.) Thus a thin layer 
located around x = 1 will then be constructed to provide a smooth transition as 
the flow variables change from their forms a t  x = 1 - to  those at x = 1 + . I n  this 
region classical boundary-layer theory is not a valid model of the flow. Rather, 
a local interaction theory (triple-deck theory) must be used. This theory has been 
developed by Stewartson & Williams (1969), Stewartson (1969) and Messiter 
(1970). This approach was used by Stewartson & Williams (1969) for studying 
interactions between shock waves and boundary layers, by Stewartson (1969), 
Brown & Stewartson (1970) and Messiter (1970) for trailing-edge studies, by 
Smith & Stewartson (1973a, b )  for strong-injection turn-on studies, by Smith 
(1973) for the study of the influence of small bumps on boundary-layer flows, by 
Stewartson (1970a, b )  for convex- and concave-corner flows, and finally, by 
Messiter & Hu (1975) for wall-curvature discontinuities. The linearized form of 
the triple-deck theory has been described by Smith (1972) and Stewartson & 
Smith ( 1 9 7 3 ~ )  in the context of the slot-injection problem. The analysis therein 
is used to describe the disturbance to  an upstream Blasius boundary layer 
caused by initiation of wall injection of magnitude h = O(V,,R-Q) over a stream- 
wise distance O(R-8) when V, < 1 .  For these conditions the lower-deck system 
has a linear form which can be solved analytically. 

In  this note we consider the disturbance to the upstream boundary layer 
associated with (1 .1 )  for x < 1 caused by the abrupt cut-off of injection a t  ~ t '  = 1 
It is shown that the linear lower-deck system for this problem can be reduced to 
that given by Smith & Stewartson ( 1 9 7 3 ~ ) .  Hence their results maj- be used 
directly in the present problem. Of course, the physical interpretation of those 
results differs in the present work because the boundary conditions are altered. 

2. Flow downstream of the cut-off point 
We consider the flow in a boundary layer adjacent to a semi-infinite flat plate. 

A gas is being injected (weak injection) over a region starting from the leading 
edge of the plate and extending a finite distance along the plate to x = 1 (the 
cut-off location). The mass rate distribution is given by (1. l ) ,  where for simplicity 
t,he gas injected at the surface will be taken t o  be the same as the gas in the 
external flow. 

The analysis of the flow in the boundary layer both upstream and downstream 
of the cut-off point is best carried out in t,erms of the Howarth-Dorodnitsyn 
co-ordinates defined by 

- 
I' = / o y p d Y ,  Y = yR3, (2.1) 

u = Y,, I' = -p- l [Yz+ v(aP/ax),], (2.21, (2.3) 

where y is measured normal to the plate and has been non-dimensionalized with 
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respect to L. The transformed stream function Y is related to the physical stream 
functionY* by the relation Y = (Y*/U,  L)  R3. Furthermore, we use the Chapman 
viscosity law p,u = constant = G, where ,u is the viscosity of the flow non- 
dimensionalized with respect to the external-flow value.? The basic equations in 
the boundary layer are obtained from the full Navier-Stokes equation by using 
(2.1)-(2.3) and applying the limit process x, 7 fixed as R-tco. In stream-function 
form we find 

YFYzF - Y x Y E  = YFFF. (2.4) 

Yy(x, L C O )  = 1, (2.5) 

The boundary conditions are given by 

YF(x,O) = 0,  YZ(x,O) = [-C/(2~)*][1-H(x-l)]. (2.6), (2.7) 

For the purposes of the analysis of the transition layer a t  x = 1, we need only 
the basic properties of the flow just upst,ream of the cut-off point. To this end we 
note that for 0 < x < 1 equations (2.4)-(2.7) admit a similarity solution in terms 
of the similarity variables defined by 

7 = F/(2Gx)&, Y = (2Gx)&f(?j). 

I n  terms of these new variables, (2.4)-(2.7) reduce to the system of equations 

f"' +ff" = 0, (2.8) 

f(0) = -C/Gh, f'(0) = 0, f'(v+m) = 1. (2.9) 

The solutions of (2.8) and (2.9) can be extracted from the tables in Emmons & 
Leigh (1954). In  particular, for x = 1 - , Y = Yo( H), where Yo( 7 )  satisfies 

2m: +YoY; = 0, 

YO(O) = -2:c, YA(0) = 0,  Y;(F+Co) = 1. 

The properties of Yo as 7 -+ 0 (or Y + 0)  are 

(2.10) 

(2.11) 

where T, is the prescribed wall temperature. Here a = f"(O)/J2 and may be found 
from Emmons & Leigh's (1954) tables. It is to be noted that a depends on C and 
tends to zero as C+C,,. Here Co is the critical injection value described earlier. 

Now that we have established the basic properties of the flow upstream of the 
cut-off point, we turn our attention to the flow just downstream of the cut-off 
point. A Goldstein-type analysis (Goldstein 1930) of the singularity will be used. 
Thus for g = x - 1 + 0 + we look for a solution of the form 

Y(6,F) = Y o ( q + p Y 1 ( H ) +  .... (2.12) 

t This model leads to an uncoupling of the momentum equation from energy considera- 
tions which is valid as long as the pressure field is o(1).  
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Such a form agrees with the initial profile Yo( 7) a t  x = 1 - , but in general it 
does not satisfy the new boundary condition a t  the wall for x = 1 +, namely 
Y J x ,  0) = 0. Thus (2.12) represents a continuation of the flow in the upstream 
boundary layer but is not valid near the wall, where a different expansion must 
be specified as 7 --f 0. According to Goldstein's t,heory, this ' wall-layer ' expansion 
takes the form 

" ( 6 , ~ )  = - 24 C + f"lFo(7) + pzF1(7) + . . . , (2.13) 

where 7 = F p ,  n, < n2. (2.14) 

Following the standard reasoning (Goldstein 1930; Smith 1972) i t  may be 
shown that m = n, = 2n3 = $. Similarly one finds 

The system describing Fl(v), 

(2.17) 

c a  
F1(O) = q ( 0 )  = 0, F;(y+oo) = - 72, (2.18) 

was found by Smith (1972) in a strong-injection initiation problem. I n  (2.15), I? is 
the standard gamma function. The solution of (2.17) with (2.18) is given by 

( 2 W  

Thus Y is given near x = 1 + by 

Y G  H) = YO(Y)+~--&~)5 33 r(+) gyr(F)+ 0 ... (2.20) 

for (+ 0 with 
is described by 

= O(1) (fixed). I n  the second region, where = 0(6$), the flow 

Y((,q) = -2)C+aaG- . fr2f ;3+Fl(r )5+. . . ,  ( + O ,  7 fixed, (2.21) 

where F,(T) is given by (2.19). These solutions are not uniformly valid for 5+0. 
One may infer from (2.20) that, for H = O( I ) ,  the vertical velocity v behaves like 
C-aR-4, while the horizontal component u is well behaved and is O(1). I n  this 
region, the slope of a streamline is thus proportional to 6-3 R-4, which becomes 
large as (-+ 0. The slope a t  the edge of the boundary layer is proportional to an 
induced pressure in the external flow, which consequently affects the flow in the 
boundary layer. Hence, as (+ 0, the interaction pressure gradient P, is given by 

P, = O([-W-4), 

which will become relatively large as [ + O .  The presence of a large pressure 
gradient, which has been entirely ignored in the foregoing formulation, suggests 
the necessity of the local int'eraction theory. 
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3. The ‘ triple-deck’ theory 
The appropriate form of the triple-deck theory for this problem can be found 

by arguments similar to those used by Stewartson (1969), Messiter (1970) and 
Smith (1972, 1973). The essential point to note here is that the disturbance is 
caused by the O(R-4) transverse velocity near the wall changing rapidly over 
a short distance. This relatively weak disturbance (in comparison with those 
found in shock-wave interactions or near trailing edges for example) leads to a 
‘linearized ’ triple-deck analysis with a local pressure variation and main-deck 
transverse velocity O(Re-4) rather than the more classical magnitude O(Re-d ). 
All other scaling parameters are the same as those found in usual triple-deck 
analyses. The linearized formulation has been used by Smith (1972) for strong- 
injection initiation studies and recently by Messiter & Hu (1975) to describe 
boundary-layer variations near a discontinuity in wall curvature. 

As in other related local interaction studies, the analysis can be reduced to an 
equation describing the flow in the lower deck and the related boundary condi- 
tions. The latter include a pressure interaction statement arising from the dis- 
turbance of the external flow by the effective slender body composed of the 
internal structure of the triple-deck. Following traditional arguments, one finds 
that the lower-deck system is given by 

Dl[ + Vl$ = 0, (3.1) 

(a/Tfo Gh) ( PQg + TI) = - Pli + pw Dl?p, (3.2) 

mt, 0) = 0, p w w ,  0) = 2 t C [ I - - ~ ( O l ,  (3.3) 

(3.5) 

Pl(f)  = -J’(c)/B$, B = M: - 1. (3.6) 

I n  this set [ = ER#, Pa = yR8, Pl = PRt and = V .  The velocity parallel to the 
plate, 

(3.7) 

defines the perturbation quantity Dl. I n  this expression, the first term represents 
the basic linear velocity profile in the lower deck. The constants C, a, T,, pw, pw 
and G have been defined previously. In (3.4) and (3.6) the function A^(g)represents 
the slender-body interaction effect. It is found from the complete solution of 
(3.1)-(3.6). Once the flow in the sublayer is known, and hence Pl(c) is deter- 
mined, the main- and upper-deck solutions can be determined completely. 

Although the lower-deck transverse velocity is O(R-8), it  is noted that the 
main deck value is O(R-i). This slightly larger value reflects the sudden local 
downward displacement of steamlines in the main deck as those in the lower deck 
collapse towards the wall just after injection cut-off. As a result, the outer dis- 
placement streamline of the main deck has a local negative slope O(R1) .  This 
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leads to the local pressure interaction P = O(R-8). Of course, an outer-deck 
transition zone is required to reduce the pressure disturbance to tlie globally 
consistant value O(R-4). 

4. Solution of the sublayer equations 
The system of equations (3.1)-(3.6) describing the sublayer flow consists of 

linear partial differential equations for ul and r,. It is convenient to reduce these 
equations to a canonical form independent of the parameters present. This can 
be achieved through transformations of the type suggested by Stewartson 8: 
Williams (1969) : 

CT, - CTwV* 0 -  (U*+&Y*iC"), v, = 7, (4.3), (4.4) - 29a4GtBd 

The form of (4.3) is chosen in order to make the initial condition on l J * ,  corre- 
sponding to  (3.5), homogeneous. If we substitute (4.1)-(4.6) into the sublayer 
equations, we obtain the canonical form 

u,.. + ?'& = 0, (4.7) 

Y*I7:*,+V* = -P$+U;7'y'+1, (4.8) 

(4.9), (4.10) U*([*, 0) = 0, V*( [* ,  0) = (1  - H ( [ * ) ) ,  

U*(c* ,  Y*+co) = A*([*) ,  U*([*+-OO, Y*)  = 0, (4.11), (4.12) 

P*([*) = - dA*([*) /d[* .  (4.13) 

If the substitutions v = 1 - V*, 'ZL = - U*, r = - P* and a = -A* are made in 
(4.7)-(4.13) the system given by Smith & Stewartson [1973a, equation (3.2)] 
results. Hence their equations (3.3)-(3.6) and (3.8) can be used to obtain the 
pressure interaction and wall shear in the present problem. In our notation it is 
found t h t  

(4.14) 

. .  

(4.15) 

[~Ai(O)e@'/69, [* < 0, (4.16) 

where 8 )  = - [3 Ai' (O)] and Ai is the standard Airy function. 
I n  order to plot P*(c*) and U:,,([*,O) for different [*, (4.15) and (4.17) were 

integrated numerically. A standard Gaussian-type integration subroutine was 
used. The substitution u = tf was made in (4.15) to remove the singularity at 
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5* 
FIGURE 1. The distribution of (a) the pressure O*P*((*) and (b) the wall shear 

O* U$.([*,  0) in the interaction zone. 

t = 0. For each [* the integrations were carried out over the inverval 0 < u 6 20. 
Owing to the exponential nature of the integrand, replacing the upper limits of 
the integrals (4.15) and (4.17) by 20 produces a t  most a transcendentally small 
error O(exp (-u3)), u > 20. The integrations were stopped a t  [* = 40. For 
c* > 40, asymptotic estimates of (4.15) and (4.17) can be used more effectively. 
eP*(f;*) and S*U$,((*, 0) are plotted m. c* in figures 1 (a) and ( b )  respectively. 
The values of Pl ( f )  and ulp (l, 0) can be obtained by making use of the trans- 
formations (4.1)-(4.6). It is to be noted that these solutions are continuous a t  
c* = 0 while the derivatives of P*([*) with respect to c* are not. This discon- 
tinuity reflects the discontinuity in the boundary conditions a t  c* = 0. The dis- 
continuity in the pressure gradient is, however, much weaker than the original 
jump in the boundary conditions a t  [* = 0. Further investigation of the problem 
in the neighbourhood of g = 0 (in contrast to 5 = 0) would eliminate such a dis- 
continuity altogether. Finally, it can be shown quite simply (Smith 1972; Smith 
& Stewartson 1973a) that the solution (4.17) actually merges with the down- 
stream solution (2.21). 
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5 .  Conclusions 
Linearized local interaction theory has been used to describe the rapid transi- 

tions occurring in an attached supersonic boundary layer near a point of injection 
cut-off. The triple-deck analysis provides continuous variation of the dependent 
variables from the upstream injection boundary layer to the downstream 
boundary layer described by the Goldstein analysis. In  figure 1 (a )  we observe 
a strong favourable pressure gradient for x < 1 resulting from the sudden down- 
ward displacement of streamlines in the boundary layer due to injection cut-off. 
There is a subsequent more gradual pressure increase for x > 1 such that the 
O(R-8) pressure field vanishes far from the cut-off point on the triple-deck scale. 
This is, of course, required by the global requirement that the pressure field be 
no larger than that of second-order boundary-layer theory, e.g. O(R-&). It should 
be noted from (4 .5 )  that the interaction pressure is linearly proportional to the 
upstream injection-rate constant C .  

The wall-stress distribution in the interaction zone may be calculated from the 
wall shear obtained from (3.7), (4 .3 )  and the results in figure 1 (b) .  In  non-dimen- 
sional form we find that 
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7, = (R-~/Tw)[~G-~+R-~bU&(E*,O)+ ...I, (5.1) 

b = C a ~ T $ , / 2 ~ G ~ B ~ .  

This may be compared with the classical boundary-layer value a t  x = 1 - , just 
upstream of injection cut-off, found from (2.10) : 

T, = (R-g/T,) aG-4. ( 5 . 2 )  

Finally we have the stress distribution in the wall layer just downstream of cut- 
off found from the Goldstein analysis in (2.13)-(2.19): 

We observe that the stress correction in (5.1) arising from the ol term in (3 .7)  is 
O(R-B) compared with the leading term. From figure 1 ( b )  it  may be observed that 
the correction becomes significant first just upstream of [* = 0 as a result of the 
sudden downstream acceleration of the fluid by the locally strong favourable 
pressure gradient shown in figure 1 (a).  Subsequently the correction grows 
relatively slowly, but relenLlessly, owing to viscous effects in the lower deck as 
the pressure field decays. Hence, far downstream on the triple-deck scale, the 
correction becomes as large as the leading term in (5.1). This is necessary in order 
that the value of the total wall shear merges with that of the Goldstein analysis 
in (5.3).  

If this problem had been analysed purely in terms of classical boundary-layer 
theory, then only the stress distributions (5 .2)  and (5 .3)  would be relevant. From 
the latter one can show tha.t 

Hence there is a singularity in the wall-stress derivative for E-. 0. This may be 



An attached supersonic boundary layer 

compared with the analogous quantity obtained from (5.1): 
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Since t,he curve in figure 1 ( b )  is smooth, this distribution is seen to be well- 
behaved in the interaction zone. 
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